Skip to main content

Dart Programming - Data Types

 

Dart Programming - Data Types

One of the most fundamental characteristics of a programming language is the set of data types it supports. These are the type of values that can be represented and manipulated in a programming language.

The Dart language supports the following types−

  • Numbers
  • Strings
  • Booleans
  • Lists
  • Maps

Numbers

Numbers in Dart are used to represent numeric literals. The Number Dart come in two flavours −

  • Integer − Integer values represent non-fractional values, i.e., numeric values without a decimal point. For example, the value "10" is an integer. Integer literals are represented using the int keyword.

  • Double − Dart also supports fractional numeric values i.e. values with decimal points. The Double data type in Dart represents a 64-bit (double-precision) floating-point number. For example, the value "10.10". The keyword double is used to represent floating point literals.

Strings

Strings represent a sequence of characters. For instance, if you were to store some data like name, address etc. the string data type should be used. A Dart string is a sequence of UTF-16 code units. Runes are used to represent a sequence of UTF-32 code units.

The keyword String is used to represent string literals. String values are embedded in either single or double quotes.

Boolean

The Boolean data type represents Boolean values true and false. Dart uses the bool keyword to represent a Boolean value.

List and Map

The data types list and map are used to represent a collection of objects. A List is an ordered group of objects. The List data type in Dart is synonymous to the concept of an array in other programming languages. The Map data type represents a set of values as key-value pairs. The dart: core library enables creation and manipulation of these collections through the predefined List and Map classes respectively.

The Dynamic Type

Dart is an optionally typed language. If the type of a variable is not explicitly specified, the variable’s type is dynamic. The dynamic keyword can also be used as a type annotation explicitly.


A variable is “a named space in the memory” that stores values. In other words, it acts a container for values in a program. Variable names are called identifiers. Following are the naming rules for an identifier −

  • Identifiers cannot be keywords.

  • Identifiers can contain alphabets and numbers.

  • Identifiers cannot contain spaces and special characters, except the underscore (_) and the dollar ($) sign.

  • Variable names cannot begin with a number.

Type Syntax

A variable must be declared before it is used. Dart uses the var keyword to achieve the same. The syntax for declaring a variable is as given below −

var name = 'Smith';

All variables in dart store a reference to the value rather than containing the value. The variable called name contains a reference to a String object with a value of “Smith”.

Type Syntax

Dart supports type-checking by prefixing the variable name with the data type. Type-checking ensures that a variable holds only data specific to a data type. The syntax for the same is given below −

String name = 'Smith'; 
int num = 10;

Consider the following example −

void main() { 
   String name = 1; 
}

The above snippet will result in a warning since the value assigned to the variable doesn’t match the variable’s data type.

Output

Warning: A value of type 'String' cannot be assigned to a variable of type 'int' 

All uninitialized variables have an initial value of null. This is because Dart considers all values as objects. The following example illustrates the same −

void main() { 
   int num; 
   print(num); 
}

Output

Null 

The dynamic keyword

Variables declared without a static type are implicitly declared as dynamic. Variables can be also declared using the dynamic keyword in place of the var keyword.

The following example illustrates the same.

void main() { 
   dynamic x = "tom"; 
   print(x);  
}

Output

tom

Final and Const

The final and const keyword are used to declare constants. Dart prevents modifying the values of a variable declared using the final or const keyword. These keywords can be used in conjunction with the variable’s data type or instead of the var keyword.

The const keyword is used to represent a compile-time constant. Variables declared using the const keyword are implicitly final.

Syntax: final Keyword

final variable_name

OR

final data_type  variable_name

Syntax: const Keyword

const variable_name

OR

const data_type variable_name

Example – final Keyword

void main() { 
   final val1 = 12; 
   print(val1); 
}

Output

12

Example – const Keyword

void main() { 
   const pi = 3.14; 
   const area = pi*12*12; 
   print("The output is ${area}"); 
}

The above example declares two constants, pi and area, using the const keyword. The area variable’s value is a compile-time constant.

Output

The output is 452.15999999999997

Note − Only const variables can be used to compute a compile time constant. Compile-time constants are constants whose values will be determined at compile time

Example

Dart throws an exception if an attempt is made to modify variables declared with the final or const keyword. The example given below illustrates the same −

void main() { 
   final v1 = 12; 
   const v2 = 13; 
   v2 = 12; 
}

The code given above will throw the following error as output −

Unhandled exception: 
cannot assign to final variable 'v2='.  
NoSuchMethodError: cannot assign to final variable 'v2=' 
#0  NoSuchMethodError._throwNew (dart:core-patch/errors_patch.dart:178) 
#1      main (file: Test.dart:5:3) 
#2    _startIsolate.<anonymous closure> (dart:isolate-patch/isolate_patch.dart:261) 
#3    _RawReceivePortImpl._handleMessage (dart:isolate-patch/isolate_patch.dart:148)

Comments

All Post

When to Use Waterfall vs. Agile

  We compare the benefits and drawbacks of using two well-known software development methodologies, Waterfall and Agile, and lay out when it might be more suitable to use one over the other – or combine practices of both – for your product initiative. When developing a new software product, your team will need to navigate which development methodology is right for your initiative. In the world of managing  software development  projects, the topic of Agile vs Waterfall is widely debated. Many thought leaders and Agile enthusiasts in the industry have argued Waterfall is dead, however, traditional organizational environments and processes have led to it still being widely used today. A 2017 report from the Project Management Institute shows that  51% of the organizations surveyed use Waterfall either often or always . The reality is, each software development project poses its own unique challenges and requirements. It’s not a matter of deciding which development methodology is “the bes

Flutter form validation: Full guide for you to make Flutter form

  Flutter form validation Getting started with form validation in Flutter The Flutter SDK provides us with an out-of-the-box widget and functionalities to make our lives easier when using form validation. In this article, we’ll cover two approaches to form validation: the form widget and the Provider package. You can find more information on these two approaches in the official Flutter docs. Creating a form in Flutter First, we are going to create a simple login page that has the following fields: Email Name Phone number Password For the validation, we want the users of our app to fill in the correct details in each of these fields. The logic will be defined as such: First, for the name field, we want the user to enter a valid first name and last name, which can be accompanied by initials. For the email field, we want a valid email that contains some characters before the “@” sign, as well as the email domain at the end of the email. For phone number validation, the user is expected to

How to change the language on Android at runtime and don’t go mad

  How to change the language on Android at runtime and don’t go mad TL;DR There is a library called Lingver that implements the presented approach with just a few lined of code.  Check it out! Introduction The topic is old as the hills, but still is being actively discussed among developers due to frequent API and behavior changes. The goal of this post is to gather all tips and address all pitfalls while implementing this functionality. Disclaimer Changing the language on Android at runtime was never officially encouraged or documented. The resource framework automatically selects the resources that best match the device. Such behavior is enough for common applications, so just make sure you have strict reasons to change it before proceeding further. There are a ton of articles and answers on Stack Overflow but they usually lack enough of explanation. As a result, when this functionality gets broken, developers can’t easily fix it due to the messy API and lots of deprecated things. We

7 Key Android Concepts

  Although the Android platform is open and customizable, Android users have become accustomed to constructs developed by Google for Android devices. Although the Android platform is open and customizable, Android users have become accustomed to constructs developed by Google for Android devices. Moreover, the use of these Android concepts is vital in developing an application quickly – custom Android designs can take up to 10 times longer! Android UI Controls Android provides a number of standard UI controls that  enable a rich user experience . Designers and developers should thoroughly understand all of these controls for the following reasons: They are faster to implement. It can take up to ten times longer to develop a custom control than to implement a user interface with standard Android controls. They ensure good performance. Custom controls rarely function as expected in their first implementation. By implementing standard controls, you can eliminate the need to test, revise a

How to them the background of the Android options menu items

  “What we’ve got here is… failure to theme. Some views you just can’t reach. So you get what we had here last project, which is the way Android wants it… well, it gets it. I don’t like it any more than you men.” – Captain, Road Prison 36 Some of you might recognize the previous paragraph as the introduction of Guns ‘N Roses’ Civil War or from the movie Cold Hand Luke starring Paul Newman. This is the feeling I get when I try to create a custom theme for an application on Android. The Android SDK does permit some level of theming, which is not really well documented to start with. Other things are hard-coded, “so you get what we had here last project”. Now, one of the things your application will most likely use is the Options menu, which is the menu you see when you press the hard menu key. It is kind of… orange. In our last project, we had to completely remove the orange in favor of our customer’s color scheme, which is on the blue side. I couldn’t find a way to change the menu item

Clean Code and the Art of Exception Handling

  Clean Code and the Art of Exception Handling Exceptions are as old as programming itself. An unhandled exception may cause unexpected behavior, and results can be spectacular. Over time, these errors have contributed to the impression that exceptions are bad. But exceptions are a fundamental element of modern programming. Rather than fearing exceptions, we should embrace them and learn how to benefit from them. In this article, we will discuss how to manage exceptions elegantly, and use them to write clean code that is more maintainable. Exceptions are as old as programming itself. Back in the days when programming was done in hardware, or via low-level programming languages, exceptions were used to alter the flow of the program, and to avoid hardware failures. Today, Wikipedia  defines exceptions as: anomalous or exceptional conditions requiring special processing – often changing the normal flow of program execution specialized programming language constructs or computer hardware m

Android Jetpack Compose

  Jetpack Compose Tutorial for Android: Getting Started Jetpack Compose is Android’s modern toolkit for building native UI. It simplifies and accelerates UI development on Android. Quickly bring your app to life with less code, powerful tools, and intuitive Kotlin APIs. At Google I/O 2019, Google first announced  Jetpack Compose . Jetpack Compose is Google’s response to the declarative UI framework trend, which the Android team is developing to fundamentally change the way developers create UI, making it easier and faster to write, and more performant to run. It is a part of the Jetpack suite of libraries and as such should provide compatibility throughout platform versions, removing the need to avoid certain features, because you’re targeting lower-end devices or older versions of Android. Although it’s still in an alpha , Compose is already making big waves in the Android community. If you want to stay up-to-date on the latest and greatest technology, read on! In this tutorial, you’

Loops in Dart 💪💪💪😎😎😎

       Loops in Dart   💪💪💪😎😎😎 Dart Loops In Programming, loops are used to repeat a block of code until certain conditions are not completed. For, e.g., if you want to print your name 100 times, then rather than typing print(“your name”); 100 times, you can use a loop. There are different types of loop in Dart. They are: For Loop For Each Loop While Loop Do While Loop Info Note : The primary purpose of all loops is to repeat a block of code. Print Your Name 10 Times Without Using Loop Let’s first print the name 10 times without using a loop. void main() { print( "John Doe" ); print( "John Doe" ); print( "John Doe" ); print( "John Doe" ); print( "John Doe" ); print( "John Doe" ); print( "John Doe" ); print( "John Doe" ); print( "John Doe" ); print( "John Doe" ); } Show Output

MVVM architecture, ViewModel and LiveData (Part 1)

  MVVM architecture, ViewModel and LiveData (Part 1) During Google I/O, Google introduced  architecture components  which includes  LiveData  and  ViewModel  which facilitates developing Android app using MVVM pattern. This article discusses how can these components serve an android app that follows MVVM. Quick Definition of MVVM If you are familiar with MVVM, you can skip this section completely. MVVM is one of the architectural patterns which enhances separation of concerns, it allows separating the user interface logic from the business (or the back-end) logic. Its target (with other MVC patterns goal) is to achieve the following principle  “Keeping UI code simple and free of app logic in order to make it easier to manage” . MVVM has mainly the following layers: Model Model represents the data and business logic of the app. One of the recommended implementation strategies of this layer, is to expose its data through observables to be decoupled completely from ViewModel or any other